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Abstract

This paper presents a reliability- and robustness-based formulation for robust control
synthesis for systems with probabilistic uncertainty. In a reliability-based formula-
tion, the probability of violating design requirements prescribed by inequality con-
straints is minimized. In a robustness-based formulation, a metric which measures
the tendency of a random variable/process to cluster close to a target scalar/function
is minimized. A multi-objective optimization procedure, which combines stability
and performance requirements in time and frequency domains, is used to search
for robustly optimal compensators. Some of the fundamental differences between
the proposed strategy and conventional robust control methods are: (i) unneces-
sary conservatism is eliminated since there is not need for convex supports, (ii) the
most likely plants are favored during synthesis allowing for probabilistic robust op-
timality, (iii) the tradeoff between robust stability and robust performance can be
explored numerically, (iv) the uncertainty set is closely related to parameters with
clear physical meaning, and (v) compensators with improved robust characteristics
for a given control structure can be synthesized.
Several numerical methods for estimation, including the Hammersley sequence sam-
pling method, the First Order Reliability method, and the First- and Second-
Moment-Second-Order-Methods, are compared. Examples using output-feedback
and full-state feedback with state estimation are used to demonstrate and validate
the methodology.
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1 Introduction

Achieving balance between stability and performance in the presence of uncertainties
is one of the fundamental challenges faced by control engineers. Tradeoffs must be
made to reach acceptable levels of stability and performance with adequate robust-
ness to parameter uncertainty. These tradeoffs are explicitly linked to the control
engineer’s choice of uncertainty model as well as how that model is exploited in the
synthesis process. Usually, the assumed uncertainty model has a profound impact
on the performance robustness of the closed-loop system.

Several uncertainty models, such as norm-bounded perturbations, interval anal-
ysis, fuzzy sets and probabilistic methods [1–3] are typically used. The most com-
monly used robust control methods [4] are µ-synthesis and H-infinity. In these
methods, uncertainty is modeled with norm-bounded complex perturbations of ar-
bitrary structure about a nominal plant. This treatment is used primarily because
it leads to a tractable set of sufficient conditions for robust stability, making the ap-
proach computationally efficient. These methods are based on the most pessimistic
value of performance among the possible ones, usually referred to as “worst-case”.
This worst-case performance is usually realized only by a single member of the
uncertain model set and by a particular input signal. No information is provided
regarding the likelihood that this worst-case will ever occur in practice. In addition,
the intrinsic mathematical requirements of the approach usually lead to conservative
models of uncertainty, over-conservative designs and complicated compensators.

Probabilistic uncertainty not only defines a set of plants where the actual dy-
namic system is assumed to reside but also associates a weight, the value of the
probability density function, to each member of the set. In contrast to conventional
robust control methods, this “additional dimension” allows the pursuit of robustly
optimal solutions in the probabilistic sense. For instance, reliability-based design
searches for solutions that minimize the probability of violating design requirements
prescribed in terms of inequality constraints. Hence, reliability-based control design
searches for the compensator that places as much probability as possible within
the region where the design requirements are satisfied. Notice that this allows the
search for the compensator with the best robustness for a given control structure,
e.g., the most robust PID controller, even though the violation of some the design
requirements for some of the plants in the uncertainty set is possibly unavoidable.

Synthesis approaches based on random searches [5–7] and stochastic gradient al-
gorithms [8–10] have been applied to probabilistic robust control. In these studies,
random sampling is the primary tool for assessing and pursuing acceptable levels
of robustness in the control solution. On the other hand, asymptotic approxima-
tions [11, 12] for the estimation of failure probabilities have only been used as a
control analysis tool. The works [5–7, 13, 14] and references cited therein are espe-
cially relevant to this paper. Even though they lay down the basic framework for
the reliability control synthesis of engineering problems, important aspects of the
formulation and of the solution method remain to be explored and refined. This
article addresses and extends some of those aspects.
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The main contributions of this study to the state of the art in the subject are
as follows:

1. The use of robustness-based metrics for minimizing the performance degrada-
tion caused by uncertainty.

2. The use of bounds on the reliability metrics based on the first two order
moments. This practice reduces considerably the computational demands of
the synthesis algorithms based on the estimation of failure probabilities.

3. The use of shapable failure domains within the reliability formulation. This
allows the integration of robustness considerations into the conventional reli-
ability approach.

4. The integrated use of deterministic sampling and asymptotic approximations
for the estimation of reliability metrics. This hybrid approach (i) reduces the
computational complexity of the synthesis algorithm without compromising
the accuracy of the results, (ii) eliminates the random character of the esti-
mation, and (iii) eliminates the high computational demands associated with
the estimation of small failure probabilities via sampling.

This paper is organized as follows. Section 2 presents basic concepts related to
control and probabilistic uncertainty. Section 3 introduces reliability metrics for
random variables and processes and presents realizations to stability and time- and
frequency-dependent performance metrics. Mean and variance based bounds to the
reliability metrics are also derived therein. Robustness-based metrics for random
variables and processes are introduced in Section 4. Section 5 presents the numer-
ical methods used to estimate the above mentioned metrics. The control synthesis
procedure is presented in Section 6, where specifics of both the reliability and the
robustness-based formulations are examined. Two examples are presented in Sec-
tion 7, where a satellite’s attitude control problem and the disturbance rejection in
a flexible beam are used to demonstrate the method. Finally, some conclusions are
stated in Section 8.

2 System Dynamics

Let p be a vector of random variables used to model the uncertain parameters of
the system. In this study, p is prescribed a priori by the joint probability density
function (PDF) fp(p) or equivalently by the cumulative distribution function (CDF)
Fp(p)1. The set of values that p could take, called the support of p, will be denoted
as ∆p.

Consider the probabilistic model M(p) of a Linear Time Invariant (LTI) system,
where the dependence of the model on the uncertain parameters could be non-linear.
The reader must notice however, that the developments presented herein do not
require the system to be LTI. The propagation of ∆p through M leads to a set

1In these expressions, the subscript refers to the symbol used for the random variable while the
value in parenthesis refers to a particular realization of it.
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of uncertain plant models in which the physical system is assumed to reside. The
probability distribution of a plant within this set is fully determined by M(p) and
fp(p). In a transfer function representation, we will refer to the uncertain plant as
G(p) and to the compensator as K(k), where k is the vector of design parameters
to be determined. Alternatively, a state space realization of M(p) leads to

ẋ = A(p)x + B(p)u + F(p)z (1)
y = C(p)x + D(p)u + E(p)v (2)

where x is the state, u is the control, z is process noise, y is the system output and v
is sensor noise. The noise signals are commonly modeled as delta correlated Gaussian
white noises satisfying E[z̃] = 0 and E[z̃(t)z̃T (t + κ)] = Sδ(κ), where z̃ = [zT ,vT ]T ,
S is the spectral density matrix and E[·] is the expected value operator. In what
follows, the explicit dependence on p is omitted while D is assumed to be zero.

Important properties used in control design, such as pole placement and the
Separation Principle, do not hold due to the offset between the deterministic math-
ematical model and the actual dynamic system. The effects of parametric uncer-
tainty on the Separation Principle are considered next. For the full-state feedback
law u = −Gx and a full-order observer with gain L based on the expected plant
E[M(p)] (any other deterministic plant such as M(E[p]) could be used instead),
the observer equation and the closed-loop dynamics for velocity feedback are given
by

˙̂x = (E[A]− E[B]G + L(C− E[C])) x̂ (3)

˙̃x = Ãx̃ + B̃z̃ (4)

ỹ = C̃x̃ + Ẽz̃ (5)

Ã =

 A−BG BG
A− E[A] + (E[B]−B)G

+L(E[C]−C)
(B− E[B])G + E[A]− LE[C]



B̃ =
[

F 0
0 −LE

]
where x̂ is the estimation of x, x̃ = [xT ,gT ]T is the augmented state vector, g = x−x̂
is the estimation error, C̃ = [CT |0T ]T and Ẽ = [0T |ET ]T . The vector k is formed by
the feedback gain G and the observer gain L. Notice that the separation principle
holds, i.e., Ã is upper triangular, if the deterministic plant used to generate the
observer matches the dynamic system exactly. However, in general, the Separation
Principle does not hold due to uncertainty in the plant model. In addition, the
random closed-loop poles do not occur at the locations selected for the full-state
feedback, i.e. poles of the Ã1,1 subsystem, nor at the locations for the full-order
observer, i.e. poles of the Ã2,2 subsystem.
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In this paper we propose a methodology for robust control design for systems
with probabilistic uncertainty. Some of the major differences between the proposed
strategy and conventional robust control methods are: (i) unnecessary conservatism
is eliminated since there is not need for convex or bounded supports, (ii) the most
likely plants are favored during synthesis allowing for probabilistic robust optimality,
(iii) the tradeoff between robust stability and robust performance can be explored,
(iv) the uncertainty set is closely related to parameters with clear physical mean-
ing, and (v) compensators with improved robust characteristics for a given control
structure, e.g., PID, can be designed.

3 Reliability-Based Metrics

The propagation of a fixed set of parameters of the plant through conventional con-
trol analysis tools leads to set of scalar quantities, e.g., closed loop poles, and a
set of functions, e.g., step responses and Bode plots. The propagation of proba-
bilistic uncertainty through the same tools leads to random variables, e.g., random
closed-loop poles, and random processes, e.g., the step responses become random
processes parameterized by time and the Bode plots become random processes pa-
rameterized by frequency. In this section we first introduce reliability metrics for
random variables and processes. Such metrics will be used to quantify the violation
of the design requirements. Specific realizations corresponding to stability, time
and frequency requirements are then provided. In general, we will use x and x(h) to
denote a random variable and a random process dependent on p through the plant
model. For the random process x(h), h refers to an arbitrary variable such as time
or frequency.

3.1 Random Variables

We first introduce the concept of probability of failure. Let x(p) be the random
variable of interest. Let x > x be a design requirement. The event x ≤ x will
be referred to as failure. The corresponding failure set is given by F = {x | x ∈
(−∞, x]}, where the failure boundary x is a deterministic quantity prescribed in
advance. The admissible domain, namely A = {x | x ∈ (x,∞)}, is the complement
of the failure domain. The same type of discrimination can be done in the parameter
space p by using x(p). The function g(p, x) = x(p) − x, called the limit state
function, divides the parameter space in two parts, the domain leading to A, i.e.,
g(p, x) > 0, and the domain leading to F , i.e., g(p, x) ≤ 0. Hence, F results from
mapping the set {p ∈ ∆p | g(p, x) ≤ 0} through x(p). In this case, the probability
of failure Pf is given by

Pf = P[x ≤ x] =
∫

ξ≤x
fx(ξ)dξ =

∫
g≤0

fp(p)dp (6)

Similar expressions can be derived if the design requirement is x < x. These expres-
sions describe reliability metrics for the random variable x when a single constraint
is present, i.e., x > x or x < x. A reliability metric for the random variable x having
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both constraints can be easily formed

rx(x, x) ∆= rx(x) + rx(x) (7)

where

rx(x) ∆= P[x ≤ x] = Fx(x) (8)

rx(x) ∆= P[x > x] = 1− Fx(x) (9)

Notice that rx(x) is equivalent to Pf in Equation (6). We will refer to x and x
as the boundaries of the failure domain F = {x | x ∈ (−∞, x] ∪ (x,∞)}. Notice
that the under-bar and the over-bar refer to the bound from below and the bound
from above of the admissible domain A = {x | x ∈ [x, x)}. This convention will be
used for the remainder of the paper. Notice that the mapping of the corresponding
limit state function through x(p) leads to the failure boundary(s). Hence, there is
a direct correspondence between F and g. A sketch with relevant information is
provided in Figure 1.

Figure 1. Sketch of the reliability metric for x.

3.2 Random Processes

The random process x(h) can be considered as the parameterization of the random
variable x by the deterministic variable h. In this paper h ∈ [0,∞] is assumed. The
random process x(h) is specified by the set of CDFs [15] Fx(h)(x, h). For instance,
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the system output y(t) is prescribed by Fy(t)(y, t). The evaluation of the process at
a particular h value, say hi, leads to the random variable x(hi) whose CDF is given
by Fx(x) = Fx(h)(x, hi). In general, the support and the percentiles of x(h) vary
with h.

Let x(h) > x(h) for h ∈ [h1, h2] and x(h) ≤ x(h) for h ∈ [h3, h4] be design
requirements for the random process x(h). In this paper, reliability metrics for
processes are formulated by extending the ideas presented above. This is attained
by integrating the reliability metric in Equation (7) for the random variable x(hi)
in the h−interval of interest. In this context, a reliability metric for x(h) is cast as

rx(h) (x(·), x(·)) ∆= rx(·)(x(·)) + rx(h)(x(h)) (10)

where

rx(h)(x(·)) ∆=
1

h2 − h1

∫ h2

h1

P[x(h) ≤ x(h)]dh =
1

h2 − h1

∫ h2

h1

Fx(h)(x(h), h)dh (11)

rx(h)(x(·)) ∆=
1

h4 − h3

∫ h4

h3

P[x(h) > x(h)]dh =
1

h4 − h3

∫ h4

h3

1− Fx(h)(x(h), h)dh

(12)

are the costs of violating the lower and upper constraints respectively. These con-
straints, namely x(h) and x(h), will also be referred to as failure boundary functions.
Notice that the failure domain

F =

 ⋃
h∈[h1,h2]

{(x, h)|x ≤ x(h)}

 ∪

 ⋃
h∈[h3,h4]

{(x, h)|x ≥ x(h)}


is delimited by the failure boundaries. Observe that Equation (10) is a natural
extension of Equation (7). A sketch with some of the pertinent metrics is provided
in Figure 2. On the top plot, the 1, 25, 75 and 99 percentiles2 are shown along with
the failure boundaries x(h) and x(h) which, for this example, are linear. On the
bottom plot, the integrands of Equations (11-12) corresponding to the configuration
in the top plot are shown. Notice that if the process is contained within the setA, the
reliability metric rx(h) is zero, meaning that the inequality constraints are satisfied
for all parameter values in ∆p.

3.3 Realizations

3.3.1 Robust Stability

A LTI system is robustly stable if all its poles are in the open left half of the complex
plane for all possible values of the random parameters. A reliability assessment of
stability is given by

P

[
v⋃

i=1

(<[si] > 0)

]
= ε

2Recall that the m percentile, given by the x values satisfying Fx(h)(x, h) = m/100, defines a
line under which m% of the probability lies. These lines allow us the visualize the h dependence of
the PDF.
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Figure 2. Sketch of the reliability metric for x(h).

where si with i = 1, 2, . . . v is a random pole, <[·] is the real part operator and ε is
the resulting probability of instability. Robust stability is attained if ε = 0. Stability
can also be cast via

λ
∆= max{<[s1],<[s2], . . . ,<[sv]} (13)

In terms of λ, the probability of instability is given by rλ(0). Robust stability
is attained if rλ(0) = 0. Several comments are now pertinent. Reaching robust
stability may not be feasible for the given support ∆p (even though it is bounded)
and the assumed control structure K(k). Notice also that the acceptance of a
small non-zero probability of instability could be desirable from the performance
point of view. For instance, by allowing the right low-probability tail of fλ(λ) to
lie on the closed right half of the complex plane, a significant enhancement in the
performance of the plants associated with the high probability portions of the PDF
can be attained. Rather than advocating for the acceptance of the risk that this
practice implies, we would like to highlight that the tradeoff between robustness and
performance can be studied by allowing small positive values of ε.

3.3.2 Time-Domain

Quite frequently, performance requirements are prescribed in terms of time-domain
specifications. The propagation of fp(p) through the system dynamics leads to
random processes for the time responses. Denote by x(t) an arbitrary random
process with CDF Fx(t)(x, t). Such process is parameterized by p, time t and the
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compensator design variable k. The dependence of x(t) on k has been omitted
for the sake of simplifying the notation. Reliability metrics for relevant processes
can be cast using Equation (10). For instance, while settling time and overshoot
requirements for a Single Input Single Output (SISO) system, i.e., u ∈ R and y ∈ R,
are integrated using ry(t)(y(t),y(t)), the control saturation requirement |u| < umax

leads to ru(t)(−umax, umax).
A reliability metric for assessing the effects of noise on the uncertain plant is

formulated next. The state covariance matrix, defined as Q(t) = E[x̃(t)x̃T (t)], is
given by the solution to the Lyapunov equation

Q̇ = ÃQ + QÃT + B̃SB̃T (14)

subject to Q(0) = Q0. The output covariance, defined as E[ỹ(t)ỹT (t)], reaches the
steady-state Root Mean Square (RMS) value

ỹrms = lim
t→∞

diag
[
C̃Q(t)C̃T

]1/2
(15)

Notice that uncertainty in p makes ỹrms a random vector. For instance, a relia-
bility metric that penalizes the violation ỹrms > yrms where ỹrms ∈ R is given by
rỹrms(yrms).

3.3.3 Frequency-Domain

The propagation of fp(p) through the system dynamics onto the frequency domain
leads to random processes of the form x(ω), whose probabilistic behavior at each
ω is specified by Fx(ω)(x, ω). Here, x(ω) is any real frequency dependent metric
of the feedback loop, e.g. Bode magnitude. This random process is parameterized
by p, frequency ω and the compensator design variable k. A reliability metric for
x(ω) is rx(ω)(x(ω), x(ω)). For instance, conventional control requirements [16] for
disturbance rejection, noise attenuation and reference tracking can be cast in terms
of the loop transfer function q(ω) ∆= |GK|. Low frequency requirements can be cast
using rq(ω)(q(ω)) with q(ω) ≡ 1 and high frequency requirements with rq(ω)(q(ω))
for which q(ω) has a proper roll off, each over a suitable range of frequencies.

3.4 Reliability Bounds

The following lemma, based on the Tchebyshev inequality, sets bounds for the reli-
ability metrics introduced above in terms of the first and second order moments.

Lemma 1. Let E[·] and V[·] denote the expected value and variance operators.

rx(x) ≤ V[x]
(E[x]− x)2

if x < E[x] (16)

rx(x) ≤ V[x]
(x− E[x])2

if x > E[x] (17)
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Proof. If ε > 0

V[x] ≥
∫
|ξ−E[x]|>ε

(ξ − E[x])2 fx(ξ)dξ ≥ ε2P [|x− E[x]| > ε] ≥ ε2P [x < E[x]− ε]

We obtain Equation (16) using x = E[x]− ε. Equation (17) is derived following the
same lines.

Notice that these bounds apply to any PDF of x. Since the bounds are solely
dependent on the first two order moments they can be estimated more accurately
than exact failure probabilities. Notice however that the use of bounds instead of
reliability metrics introduces conservatism into the solution. A metric, based on
these bounds, is defined as

bx(x, x) ∆= bx(x) + bx(x) (18)

where

bx(x) ∆=

{
V[x]

(E[x]−x)2
if x < E[x]

∞ otherwise
(19)

bx(x) ∆=

{
V[x]

(x−E[x])2
if x > E[x]

∞ otherwise
(20)

As before, the under-bar and over-bar on b refer to the way in which the failure
event is defined. Notice that rx ≤ bx, rx(x) ≤ bx(x) and rx(x) ≤ bx(x). The same
idea, extended to random processes, leads to

bx(h) (x(·), x(·)) ∆= bx(h)(x(·)) + bx(h)(x(·)) (21)

where

bx(h)(x(·)) ∆=

{
1

h2−h1

∫ h2

h1
bx(x(h))dh if x(h) < E[x(h)] ∀h ∈ [h1, h2]

∞ otherwise
(22)

bx(h)(x(·)) ∆=

{
1

h4−h3

∫ h4

h3
bx(x(h))dh if x(h) > E[x(h)] ∀h ∈ [h3, h4]

∞ otherwise
(23)

As before, rx(h) ≤ bx(h), rx(h)(x(·)) ≤ bx(h)(x(·)) and rx(h)(x(·)) ≤ bx(h)(x(·)).

4 Robustness-Based Metrics

Some performance requirements might not be properly captured in a conventional
reliability formulation since they focus on the bulk portion of the PDF. Throughout
this paper the term robustness is used to describe the design characteristic that mea-
sures the performance degradation from an ideal deterministic behavior caused by
uncertainty. Robustness metrics, that quantify such a characteristic, are presented
next. For random variables, the index

τx(x̂) ∆=
∫

∆x

(ξ − x̂)2fx(ξ)dξ = V[x] + E[x](E[x]− 2x̂) + x̂2 (24)
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is a measure of the concentration of fx(x) about the deterministic target value x̂. In
the ideal case when fx(x) = δ(x − x̂), we obtain τx(x̂) = 0. For random processes,
the index

τx(h)(x̂(·)) ∆=
1

h6 − h5

∫ h6

h5

τx(x̂(h))dh (25)

is a measure of the concentration of the process x(h) about the deterministic target
function x̂(h) for h ∈ [h5, h6]. Notice that the evaluation of the above expressions
only requires of the first two order moments of the process.

Robustness-based metrics parallel to the ones provided in Section 3.3 can easily
be posed. For instance, if yrms is the RMS steady state value of an error signal, the
index τyrms(0) quantifies the offset between the target behavior ŷrms = 0 and the
random variable yrms. Likewise, the metric τu(t)(0) quantifies the offset between the
random process u(t) ∈ R and the target û = 0, for which no actuation is required.

5 Numerical Estimation

Methods used for the estimation of the reliability- and robustness-based metrics in-
troduced above are presented herein. Historically, mathematical studies of reliability
engineering systems have focused on approximation of “probability of failure.” Some
of the techniques historically used for this approximation are particularly suited for
estimating probabilities near zero, which is the range in which one hopes a prob-
ability of failure will lie. In this study, we will be concerned with estimating the
probabilities of various random events. In this paper, events in a reliability frame-
work might be referred to as “failure events” to be consistent with previous usage
whether they actually represent a failure of some sort or not. The reader should also
be aware that any estimation technique that works well for failure probabilities near
zero also work well for events of probability near one after using the complementary
event instead.

Only the estimation of statistics for x will be addressed since the same tools can
be extended to processes. Such an extension is as follows. For the random process
x(h), create a uniform sample of e points h1, h2, . . ., he in the h-domain. We will
refer to these samples as the e h-samples. Statistics for the resulting e random
variables xi = x(hi), i = 1, 2 . . . e are then used to estimate the pertinent integrals,
i.e., Equations (11), (12), (22), (23), and (25).

5.1 Hammersley-Sequence-Sampling (HSS)

HSS generates representative deterministic samples of fp(p). The error of approxi-
mating an integral by a finite number of samples of the integrand, depends on the
uniformity of the points used to generate the samples rather than on their random-
ness. This fact has motivated the development of deterministic sampling techniques
such as HSS. While conventional Monte Carlo Sampling (MCS) is based on the gen-
eration of random points on the unit hypercube, HSS is based on the generation of
an evenly distributed set of points. The n Hammersley samples are generated by
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transforming the n Hammersley points mi with i = 1, 2, . . . n through the inverse
CDF of the uncertain parameter

pi = F−1
p (mi) (26)

The Hammersley points [17] are generated as follows. Let R > 1 be an integer. The
integer i expressed in radix-R notation is given by

i =
v∑

j=0

ijR
j

where v = floor{logR i} and ij is an integer between 0 and R − 1 for each j =
0, 1, . . . v. The inverse radix number of i, namely φR(i), is given by

φR(i) =
v∑

j=0

ij
Rj+1

The Hammersley points in a k-dimensional unit hypercube are given by the sequence

mi = 1− [i/n, φR1(i), φR2(i), . . . φRk−1
(i)]T (27)

where i = 1, 2 . . . n and Rj is the jth prime number.
HSS requires far fewer samples [18] than MCS [5–7, 14] for a given confidence

level. Improvements by a factor of three to one hundred in the convergence rate
of the estimated first two order moments have been reported [19]. Another way to
observe the advantages of HSS over MCS is to note that, for the same sample size,
the HSS sample is more representative of the random distribution than the MCS
sample. Figure 3 shows a comparison between HSS and MCS. At the top, n = 200
points on the unit hypercube are shown. At the bottom, the corresponding samples
for fp(p) = fa(a)fb(b), where fa(a) = N(0, 1) and fb(b) = B(3, 2) with ∆b = [0, 1]
are displayed. Here, N and B denote a Normal and a Beta distribution. Substantial
differences in the uniformity of the points and in the clustering of the samples are
observed. In addition, the results of calculations based on HSS samples are not
random. On the other hand, numerical experiments performed using MCS show
variability due to such factors as different implements of random number generators
and different random seeds resulting in the generation of completely different sample
sets. The discrepancy between different MCS experiments is more pronounced with
small sample size, and could be reduced, but not completely eliminated, by an
increase, possibly substantial, in the sample size. Therefore, HSS not only leads
to more accurate estimations than MCS for a given number of samples but also
eliminates the randomness from the estimation.

5.2 Mean and Variances

The reliability bounds and the robustness metrics introduced above depend exclu-
sively on means and variances. In this paper, Sampling and the First and Second
Moment Second Order approximations are used for their estimation. These methods
are briefly introduced next.
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Figure 3. Points and samples via MCS and HSS.

5.2.1 Sampling

Unbiased estimators for the mean and variance of the random variable x are

E[x] ≈ 1
n

n∑
i=1

xi (28)

V[x] ≈ 1
n− 1

n∑
i=1

(xi − E[x])2 (29)

where xi = x(pi) is the ith sample. The pi sample of fp(p) can be generated by
any sampling technique.

5.2.2 First and Second Moments of a Second Order Taylor approxima-
tion (FSMSO)

These approximations result from calculating the first and second moment of a
second order Taylor expansion of x(p) about E[p]. Let p ∈ Rm, and pi be the ith
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component of p. For an uncorrelated fp(p), the resulting approximations are

E[x] ≈ x +
1
2

m∑
i=1

∂2x

∂p2
(i)

V[p(i)] (30)

V[x] ≈
m∑

i=1

[(
∂x

∂p(i)

)2

V[p(i)] +
(

∂x

∂p(i)

)(
∂2x

∂p2
(i)

)
T[p(i)]

]
(31)

+
m∑

i=1

1
4

(
∂2x

∂p2
(i)

)2 (
F[p(i)]−V[p(i)]

2
)

+
m∑

i=1

m∑
j 6=i

1
2

(
∂2x

∂p(i)∂p(j)

)2

V[p(i)]V[p(j)]

where the functions and derivatives are evaluated at E[p], T[·] is the third central
moment operator and F[·] is the fourth.

5.3 Failure probabilities

In general, reliability metrics cannot be evaluated exactly since they involve the eval-
uation of complicated integrals, usually multi-dimensional, over complex domains.
The estimation of failure probabilities, which are basic components of the reliability
metrics, can be done using sampling or asymptotic approximations. They are briefly
introduced next.

5.3.1 Sampling

The estimation of failure probabilities via sampling is given by

Pf ≈
n∑

i=1

I(xi ∈ F)
n

(32)

where I(·) is a binary indicator function that gives one if its argument is true
and zero otherwise. MCS and HSS can be used to generate the required samples
x1, x2, ..., xn.

5.3.2 First-Order-Reliability-Method (FORM)

FORM [12] uses an asymptotic approximation for the estimation of failure probabil-
ities. In the process, p is transformed into the standard normal uncorrelated space
q. If p = T(q) = F−1

p (Fq(q)), Equation (6) is equivalent to

Pf =
∫

g(T(q))≤0
fq(q)dq

FORM approximates the domain g (T(q)) ≤ 0, by a half-space fitted to the true
domain at the point of maximum probability density. This approximation leads to

Pf ≈ Φ(−‖q∗‖) (33)
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where q∗, called the Most Probable Point (MPP) of failure, is given by the solution
to the constrained optimization problem q∗ = argmin {‖q‖ : g(T(q)) = 0}. In this
expression, Φ refers to the CDF of a standard normal random variable. Notice
that the rotational symmetry of fq(q) leads to the one-dimensional approximation
in Equation (33). When a point satisfying g(T(q)) = 0 does not exist, the MPP
does not exist and the probability of failure is zero or one. Even though FORM is
extensively used in structural engineering, its application to controls has been limited
to stability analysis [11]. Non-smooth limit state functions happen in examples of
interest. For instance, when the value of λ, the maximum real part of the eigenvalues,
is equal to the real part of more than one of the eigenvalues (counting multiplicity).
This consideration shall be taken into account when setting the algorithm to search
for the MPP. Besides, if the MPP falls at a derivative discontinuity on the limit state
surface, the approximation given by Equation (33) is not as good as first order.

5.3.3 Hybrid Approach

Sampling based techniques can readily be used to estimate probabilities of failure
using Equation (32). However, high computational demands in the evaluation of
xi = x(pi) can preclude their practicality especially when Pf ≈ 0 (or Pf ≈ 1).
Examples of this can be easily found3. On the other hand, methods based on
asymptotic approximations, such as FORM, provide good approximations when Pf

is small. This is clear since for large values of q, fq(q) decreases exponentially in
‖q‖2, so if q∗ is large enough, most of the failure probability comes from the part
of the failure event in the immediate neighborhood of q∗. On the other hand, for
failure probabilities away from zero and one, the slow decrease in Fq(q) near the
MPP and the geometrical difference between the true limit state function and its
linear approximation contribute a bigger error to the FORM approximation.

In this paper, a hybrid approach which combines HSS and FORM is used to
estimate probabilities of failure. In order to identify the numerical tool that best
suits the task at hand, a coarse and computationally-efficient estimation of Pf is first
generated using HSS. Such estimation is then compared with a reference, namely the
reference failure probability Pref , a user-defined value set in advance. The compari-
son between the coarse estimate and Pref is used to determine which of FORM or
HSS will be used to generate a new estimation, presumably more accurate. Assume
that two sets of Hammersley samples of fp(p) are available. One set has n1 samples
and the other one has n2 samples, where n2 � n1. For a given failure domain F
and a user defined reference failure probability Pref , proceed as follows

1. A1 Assessment: estimate the Pf using Equation (32) and the set of n1 samples.

2. A2 Assessment: recalculate Pf as follows. If the estimated value is greater
than Pref use Equation (32) with the set of n2 samples. If the estimated value
is less than Pref use FORM.

3Wang and Stengel [6, 7] make the approach computationally viable by using a single random
variable to model 28 uncertain parameters. The same authors [14] require 25000 samples to deter-
mine a sufficiently small 95% confidence interval.
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The refinement performed in A2 might not always be necessary. Situations in which
this is the case are as follows. Since reliability metrics for random processes are
heavily dependent on the larger values of the probabilities of failure that compose
them, (see the bottom plot of Figure 2), refining the estimation of the small failure
probabilities is inconsequential. Furthermore, if the reliability metrics are used to
calculate the cost function of an optimization problem, more accurate estimations
are not needed when the assessment resulting from using the coarse estimate of Step
1 indicates a poor design, e.g. rλ(0) � 0.

6 Control Synthesis

6.1 Reliability-based

The formulation of the control design problem from a reliability perspective is as
follows. For a given plant model, compensator structure, uncertainty model and a
set of design requirements prescribed via inequality constraints; one would like to
find the compensator parameters for which the resulting probability of violating the
design requirements is minimized. Notice that this refers to the excursion of the
outcomes into the failure domains.

6.1.1 Robustness Considerations

The reliability metrics in Equations (7-10) are usually applied using a fixed failure
set F . In this form, a reliability analysis cannot assess the system’s performance in
the regions where the design requirements are satisfied, i.e., the intersection of the
admissible domains associated with all the design requirements. Since the portion
of the random outcome lying in the admissible domain A might end up being sub-
stantially larger than the portion lying in the failure domain F , a reliability-based
approach with fixed failure boundaries does not have control over the bulk portion
of the PDF, which is the portion that dictates the most likely performance.

We now introduce the concept of a shapable failure set F with an example. Let
x(k) be the stationary RMS value of an error signal. One would like to find k such
that x is as close as possible to zero. Uncertainty in the plant makes x a random
variable. Let x be the failure boundary associated with the design requirement
x < x, i.e., a fixed failure set is F = {x | x ∈ [x,∞)}. The minimization of
rx(x) leads to reliability optimal compensators. Suppose there exist multiple designs
leading to rx(x) = 0. These designs however differ in how well the resulting PDF
of x spreads over the admissible domain A = {x | x ∈ [0, x)}. The concentration
of fx(x) about zero is an indicator of the robust performance. Say, k1 leads to
rx(x/2) = 0 which implies that rx(x) = 0 while k2 leads to rx(x) = 0 but rx(x/2) >
0. Since neither of these two designs violate the design requirement x > x, a
reliability analysis cannot establish that the compensator with parameters k1 has a
better robust performance than the one which uses k2. By minimizing the reliability
metrics and simultaneously shrinking the admissible domain, the uncertain system
performance can be concentrated in a more desirable region. This is attained by
parameterizing the failure boundaries of F as well as a penalizing function γx with
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Figure 4. Robust performance concepts and shapable failure domains

an additional design variable, namely e. The basic idea is to solve an optimization
problem for the design variable d = [k, e] such that a twofold objective is pursued:
a reliability metric is minimized while the size of A is reduced. This implies that
the failure and the admissible domains are now dependent on e, i.e., A(e) and
F(e). For the RMS example above, the minimization of J = rx(e) + γx where
γx = e, d = [k, e] and e ∈ [0, x], leads to the desired solution. This setting implies
F(e) = {x | x ∈ [e,∞)} and A(e) = {x | x ∈ [0, e)}. See Figure 4. Notice that the
value of J for k1 is less than the one for k2 if e ∈ [x/2, x).

In general, we will refer to the augmented reliability metric as the sum of a reli-
ability metric from Section 3 and the penalizing term introduce above. Augmented
reliability metrics for the random variable x and the random process x(h) take the
form rx(x(e), x(e))+γx(e) and rx(h)(x(h, e), x(h, e))+γx(h)(e) The penalizing func-
tions γx(e) and γx(h)(e) must be proportional to the size of the admissible domain
A(e). In addition, they must be built such that the minimization of the augmented
metric does not lead to unacceptable solutions, e.g., rx = 1 and γx = 0. If rx < ε is
required, use a monotonically increasing function satisfying γ ∈ [0, ε]. In the RMS
example above, for which x < x is the design requirement, this is attained by min-
imizing an augmented reliability metric with γx(e) = εe/x for e ∈ [0, x], x(e) = 0
and x(e) = e.

6.2 Robustness-based

The formulation of the control design problem from a robustness perspective is as
follows. For a given plant model, compensator structure and uncertainty model;
one would like to find the compensator parameters for which the resulting random
outcome is as concentrated as possible around a target deterministic behavior. While
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the deterministic target for a random variable is a scalar, the target for a random
process is a function, e.g., û(t) = 0 is the target function for the control.

6.3 Multi-objective Optimization

In order to satisfy multiple design requirements, all the corresponding reliability
metrics must be driven to zero. Since some of these objectives are conflicting, a
compromise among them might be required. The technique to be used reduces the
multi-objective problem into a single objective problem given by a weighted sum
of the reliability metrics. The solution to this problem will converge to a Pareto
optimal point, which is a design for which no improvement on a single objective can
be attained without making another worse. For each set of weights, the optimiza-
tion may converge to a different Pareto point. Other techniques, such as the goal
attainment method could be used instead.

6.4 Synthesis Procedure

A step-by-step procedure for control synthesis is presented next.

1. Determine the plant model and the control structure. First principles and
classical deterministic approaches to compensator design can be used. Identify
the set of parameters that have a strong impact on the plant model. Use
sensitivity information and engineering judgment to select the set of uncertain
parameters p. At this stage, the parametric plant model, i.e., G(p), and the
control structure, i.e., K(k), must be fully determined.

2. Generate the probabilistic parameter model fp(p). Use engineering judgment
and experimental data if available.

3. Use Equation (26) to generate the sample sets of fp(p) for both n1 and n2.

4. Cast the design requirements, either reliability or robustness based, in terms
of the metrics introduced above. Use Equations (7,10) for the reliability met-
rics and Equations (24,25) for the robustness metrics. Recall that while each
reliability requirement requires setting a failure domain F , each robustness re-
quirement requires setting a target behavior. Use these metrics to compose the
cost vector c, which is the vector of objectives for multi-objective optimization.
Recall that robustness considerations can be alternatively considered within a
reliability formulation, as explained in Section 6.1.1.

5. Let d be the design variable. For robustness-based metrics and reliability-
based metrics with fixed failure domains, d = k. Reliability-metrics with
shapable failure domains lead to d = [kT , eT ]T . Build a penalizing function
γ(e) for these terms following the guidelines provided in Section 6.1.1. Update
the components of the cost vector c by adding the penalizing functions and
parameterizing the failure boundaries.
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6. Solve the single objective optimization problem

d∗ = argmin
{
cTw

}
(34)

where w is composed of non-negative weights. Each cost function evaluation
used in the search for the optimal design d∗ requires a probabilistic analysis.
This analysis is done by calculating the metrics contained in c. While the
hybrid approach is used for estimating the reliability metrics, either HSS or
FSMSO are used for the robustness metrics. This task requires forming the
closed-loop Equations (4-5) and performing typical control studies such as
finding closed loop poles, time responses and Bode plots.

During optimization, the following procedure is suggested in order to focus
most of the computational effort toward the assessment of better designs. For
a reliability metric, first perform the A1 assessment of Section 5.3.3 for n1

samples of p and e1 h-samples. This implies that only the first step of the
hybrid approach is applied to all reliability metrics. If A1 shows that d is a
good design, perform the refined assessment A2. A2 is carried out by using
n2 samples of p, e2 h-samples and a user defined value for Pref . The rational
of this was presented in Section 5.3.3. For a robustness metric or a reliability
bound, HSS or FSMSO could be used. In the former case, a first assessment
can be done with the parameters of A1 and a second one with the parameters
of A2. This two-fold analysis procedure is used in the examples.

The cost vector c can be formed by combinations of reliability-based metrics, relia-
bility bounds and/or robustness-based metrics. The corresponding implications are
explored in the examples.

6.5 Optimization under Uncertainty

Let J(p,d) = cTw denote the cost function of the optimization problem. Due to
the nature of the reliability metrics in c, the cost function might not only have
plateaus, i.e., there could exist a design d and a non-zero perturbation δ such that
J(p,d) = J(p,d + δ), but might also have a discontinuous gradient.

The use of sampling in the estimation of probabilities makes the cost function
piecewise constant. Let Je(p,d) be an estimation of the actual cost J(p,d). For
any design d and regardless of the number of samples, there always exists a pertur-
bation δ such that Je(p,d) = Je(p,d + δ). This situation is aggravated, i.e., bigger
perturbations can be found, when a smaller number of samples is used or when Pf

is close to zero or one.
Mean and variances can be estimated via sampling or via FSMSO. Their es-

timation via sampling does not exhibit the numerical problems mentioned above.
Among the sampling techniques, it was found that HSS suites very well the need
for an accurate and efficient estimation [18]. Estimation via FSMSO is considerably
faster than sampling but less accurate in general. This is so, since the Taylor ex-
pansion might become a poor approximation of the actual function when fp(p) is
not concentrated about E[p].
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The nature of Je must be taken into account when selecting a numerical method
for optimization. In the examples to follow, the resulting non-convex piecewise con-
stant optimization problem is first solved using Genetic Algorithms (GA) for a fixed
number of generations. Since GA is based on a random search, the hybrid approach
is particularly convenient. After the fixed number of generations is reached, the
GA solution is refined using the Nelder Mead Simplex algorithm, which is a local
non-gradient based search method.

7 Numerical Examples

The synthesis procedure of Section 6.4 is applied herein to two examples. A textbook
satellite attitude control problem is considered first. Then, the active control of a
flexible beam subject to disturbances is considered. The following parameter values
are assumed in both problems. If p ∈ Rm, the coarse assessment A1 is performed
using n1 = 75m p-samples and e1 = 90 h−samples. For the finer assessment A2,
n2 = 500m p-samples, e2 = 180 h−samples and Pref = 0.01 are assumed. For the
sake of comparison, the examples also present the analysis of deterministic versions
of the problems for which E[p] is used as parameter. Such problems and their
solutions will be referred to as the nominal ones.

7.1 Satellite Attitude Control

Accurate satellite pointing in the presence of large thermal gradients and mass losses
for uncertain initial conditions is desired. A simple rotational model of two bodies
connected with a flexible boom leads to

J1θ̈1 + b(θ̇1 − θ̇2) + k(θ1 − θ2) = u

J2θ̈2 + b(θ̇2 − θ̇1) + k(θ2 − θ1) = 0

where θ1 and θ2 are the deflection angles, J1 and J2 are moments of inertia, k is
the equivalent stiffness, b = a

√
k/10 is the equivalent damping coefficient and u is

the applied torque. The variable a is used to model the changes in damping caused
by thermal variations. Assume that J2 = 0.1 since mass losses only affect J1. The
non-collocated sensor-actuator pair resulting from using y = θ2 leads to the SISO
system

G(p) =
k + bs

J1J2s4 + b(J1 + J2)s3 + (J1 + J2)ks2
(35)

Variations in the operating conditions and ignorance on the initial conditions are
modeled using p = [J1, a, k, θ1,0, θ̇1,0, θ2,0, θ̇2,0]T , where θ1,0 = θ1(0) and θ2,0 = θ2(0).
The following output-feedback control structure is assumed

K(k) =
k1 + k2s + k3s

2 + k4s
3

k5 + k6s + k7s2 + k8s3
(36)

The joint PDF that describes the uncertainty in p is given by the independent
random variables listed in Table 1, where U and B refer to Uniform and Beta
distributions.
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Table 1. Uncertainty Model.
J1 ∆J1 = [0.8, 1] fJ1(J1) = U(0.8, 1)

a ∆a = [0.03, 0.2] fa(a) = B(0.3, 0.2)

k ∆k = [0.09, 0.4] fk(k) = B(5, 5)

θ1,0 ∆θ1,0 = [−π/2, π/2] fθ1,0(θ1,0) = B(5.2, 5.2)

θ̇1,0 ∆θ̇1,0
= [−15, 15] fθ̇1,0

(θ̇1,0) = B(2.5, 2.5)

θ2,0 ∆θ2,0 = [−π/2, π/2] fθ2,0(θ2,0) = B(5.2, 5.2)

θ̇2,0 ∆θ̇2,0
= [−15, 15] fθ̇2,0

(θ̇2,0) = B(2.5, 2.5)

7.1.1 Nominal Compensator

A baseline compensator for the nominal plant is designed by standard pole place-
ment techniques such that large stability margins are attained. For fairness sake, the
baseline compensator’s gains where selected such that the resulting closed-loop sys-
tem is robustly stable for the uncertainty model of Table 1. The resulting gains are
k1 = 106[0.0108,−0.3271, 0.1192, 0.0092, 1.8835, 2.1305, 2.2276, 0.9308]T . The anal-
ysis of the nominal compensator using fp(p) indicates that the closed-loop system
is robustly stable as intended, i.e. rλ(0) = 0, but the time responses are unsatisfac-
tory. The CDF of λ as well as the time evolutions of the output and the control
signals are shown in Figures 5-7. The sudden variation in the slope of the CDF
of λ in Figure 5 is the result of a change in the closed-loop pole that determines
λ. The considerable disparity between λ(E[p]) and E[λ(p)] shows that the nominal
problem is not a meaningful representative of the probabilistic behavior. Figures 6
and 7 show the time evolution of the random signals by indicating the 1, 10, 20,
30, 40, 50, 60, 70, 80, 90 and 99 percentiles. In Figures 6 and 7, the percentiles
and the nominal functions are shown. Dotted lines are used to indicate the failure
boundaries introduced in the next section. It is interesting to see how the PDFs
expand, e.g. Figure 7 at 2.5 and 8 seconds, and contract, e.g. Figure 7 at 4 and
16 seconds, in a oscillatory manner. This information can be used to determine the
time periods when the effects of uncertainty are more noticeable.

7.1.2 Reliability-based compensator

Design requirements for a reliability formulation are as follows. Performance require-
ments on the closed-loop stability, settling time, over-shoot, control usage and on the
magnitude of the loop transfer function lead to c = [rλ(λ), ry(t)(y(t), y(t)), ru(t)(u, u),
rq(ω)(q(ω)), rq(ω)(q(ω))]T , where q(ω) = |GK| is the loop gain. The failure bound-
aries to be used are λ = 0; y(t) = −1.25H(t)+2.2H(t−70) for t ∈ [0, 80], where H is
the Heaviside function; y(t) = 1.25H(t)−0.2H(t−70) for t ∈ [0, 80]; u(t) = −0.5 for
t ∈ [0, 25]; u(t) = 0.5 for t ∈ [0, 25]; q(ω) = 0.75/ω for ω ∈ [10−6, 0.2] and q(ω) = 1
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Figure 5. CDF of λ for the nominal compensator.

Figure 6. y(t) for the nominal compensator. A zoom is shown below.
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Figure 7. u(t) for the nominal compensator.

for ω ∈ [1, 102].
The synthesis algorithm for a fixed set of failure boundaries leads to k2 =

106[0.0405, 0.1267, 0.2422, 0.0320, 0.5244, 1.0057, 1.2263, 0.6560]T and c = [3.13 ×
10−4, 6.51 × 10−4, 0.0037, 6.65 × 10−4, 0]T for which the weighting vector w =
[500, 1, 1, 1, 1]T was used. This weighting vector was selected in order to empha-
size stability. A probabilistic analysis of this compensator leads to Figures 8-11,
where the CDF of the dominant closed-loop poles, the output, the control and
the loop gain processes are displayed. Better robust stability characteristics, i.e.,
smaller values of rλ(0), in this compensator are attained by increasing w(1). Recall
that reaching zero probability of instability might be unfeasible. From Figure 10
we see that for all possible parameter values and initial conditions the process u(t)
stays within the ±0.5 range with more than 0.8 probability after 6 seconds. Fig-
ure 11 shows that uncertainty mostly affects the damping and the location of the
resonant frequency. While all the percentiles for ω < 0.1 are indistinguishable from
the nominal curve, percentiles in the ω ∈ [0.1, 1] are not shown. In contrast to the
mid frequency range, where the effects of uncertainty are large, there is no violation
of the low frequency design requirement. The CDFs of λ for the nominal and the
reliability based compensator are superimposed in Figure 12. Despite the increased
variability of the dominant closed-loop poles of the reliability-based compensator
(the support of λ is about two and a half times larger than the one for the nomi-
nal compensator), the system is robustly unstable with 3.13 × 10−4 probability. A
substantial improvement in the performance is achieved by trading off a very small
margin of the probability of stability. This improvement can be seen after comparing
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Figures 6-7 with 9-10. Overall, the performance resulting from k2 is substantially
better than the one resulting from k1.

During optimization, 157 random variables were used to evaluate c for the coarse
assessment A1. This task took 23.6 seconds when performed on a Pentium III 1795
MHz with 512 MB of RAM. Notice that the CPU time associated with A2 depends
on the initial conditions used to find the MPPs. For this assessment, HSS was used
for 628 random variables and the hybrid approach was used for robust stability.
This task took 102 seconds.

Figure 8. CDF of λ for the reliability-based optimal compensator.

7.1.3 Using Mean and Variance based metrics

If only means and variances are used, reliability and robustness metrics can be com-
bined to form c = [bλ(0), τy(t)(1), τu(t)(0), bq(ω)(1), bq(ω)(0.75/ω)]T . Ranges provided
before will be used with the exception of ω ∈ [5, 102] for b. All the components of
the cost vector require of the estimation of means and variances, task that can be
performed via sampling or the FSMSO method.

HSS leads to k3 = 105[1.1207, 0.2307, 1.5235, 0.1713, 0.001, 0.0692, 1.2294, 1.069]T

and c = [8.6×10−5, 0.0057, 0.0129, 1.94×10−4, 6.189×10−5]T for which the weighting
vector w = [500, 1, 4, 1, 1]T was used. A probabilistic analysis of this compensator
leads to the results shown in Figures 13, 14 and 15. Figure 13 shows that the opti-
mal compensator makes λ insensitive to uncertainty, i.e. the CDF resembles a step
function which would result if the system is deterministic. Notice that the bound on
the stability condition tends to reduce the variability of λ. This artificially reduces
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Figure 9. y(t) for the reliability-based optimal compensator. A zoom is shown
below.

the design space, i.e. there might exist solutions with a better performance in which
large variances in λ occur. This is a consequence of the form of the bound. The
comparison between the time responses for the reliability compensator and Figures
14 and 15 show substantial differences between the two solutions. While the control
for the reliability based compensator intends to keep the process within the strip
|u| < 0.5, the mean and variance based solution intends to concentrate the random
process about the target function û = 0. It can be seen that this is achieved by
inducing oscillations about the target function. The reader should also notice that
excursions beyond the failure boundaries in a reliability formulation, e.g. y(t) in
Figure 9 for the first 10 seconds, are not penalized according to the severity of the
violation. This is in sharp contrast with the mean and variance formulation. Since
we are using the same number of samples as before, the savings in CPU time when
comparing this formulation with the one of the previous section result from not us-
ing FORM. Hence, the CPU time for A1 is about the same while the CPU time for
A2 is 77s. For a given number of samples, the estimation of means and variances is
in general more accurate than the estimation of failure probabilities. Small sample
sets however, result in larger estimation errors of the moments, which could lead to
the selection of the wrong conditions in Equations (19-20) and (22-23).

Next, the FSMSO method is used for estimating the cost vector. The first and
second order derivatives for all the metrics of interest, i.e., closed-loop poles, output,
control and loop transfer function, were derived analytically. Some of the required

24



Figure 10. u(t) for the reliability-based optimal compensator.

Figure 11. Bode plot of the loop gain for the reliability-based optimal compensator.
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Figure 12. CDFs of λ.

Figure 13. CDF of λ for the mean and variance based compensator.
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Figure 14. y(t) for the mean and variance based compensator. A zoom is shown
below.

expressions are as follows ˙̃x
∂ ˙̃x
∂2 ˙̃x

 =

 Ã 0 0
∂Ã Ã 0
∂2Ã 2∂Ã Ã

 x̃
∂x̃
∂2x̃

+

 B̃
∂B̃
∂2B̃

u (37)

 ỹ
∂ỹ
∂2ỹ

 =

 C̃ 0 0
∂C̃ C̃ 0
∂2C̃ 2∂C̃ C̃

 x̃
∂x̃
∂2x̃

 (38)

where Ã, B̃, C̃, and D̃ were given in Equations (4) and (5), x̃ = [xT
c ,xT ]T , ∂[·]

indicates a derivative with respect to p(i) excluding initial conditions, and

Ã ∆=
[

Ac −BcC
BCc A−BDcC

]
,

∂Ã =
[

0 −Bc∂C
∂BCc ∂A−BDc∂C− ∂BDcC

]
,

∂2Ã =
[

0 −Bc∂
2C

∂2BCc ∂2A−BDc∂
2C− 2∂BDc∂C− ∂2BDcC

]
,
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Figure 15. u(t) for the mean and variance base compensator

B̃ ∆=
[

Bc BDc

]T , ∂B̃ =
[

0 ∂BDc

]T , ∂2B̃ =
[

0 ∂2BDc

]T
,

C̃ ∆=
[

0 C
]
, ∂C̃ =

[
0 ∂C

]
, ∂2C̃ =

[
0 ∂2C

]
In these expressions, the subscript c refers to the state space representation of the
compensator K while the matrices with no subscript refer to the open-loop plant.
The time evolution of the sensitivities is calculated by solving the state space model
in Equations (37-38). Sensitivities with respect to initial conditions can be ana-
lytically calculated via the matrix exponential. Such developments as well as the
ones for the other sensitivities are omitted due to space limitations. In general, the
analyses based on FSMSO were inaccurate when compared with sampling. Even
though the CPU time per analysis was reduced to 2 seconds, large errors in the
estimation precluded its use for synthesis. Table 2 shows a comparison between
the assessments resulting from HSS and FSMSO as the variance of the uncertain
parameters is increased. The same PDFs for the input uncertainty of Table 1 are
used while the means are kept constant. The right most column shows the aver-
age relative error in the components of c. For the Beta distributions, the increase
of the variance was attained by enlarging the support. The terms resulting from
the crossed derivatives were neglected. It can be observed that the accuracy of the
FSMSO estimation rapidly decreases as fp(p) is less concentrated about its mean.
This trait is obvious since large excursions from E[p] might considerably degrade
the accuracy of the Taylor approximation.
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Table 2. Comparison of HSS and FSMSO for k3.
V[p(i)] for Cost vector Average
i = 1, . . . 7 c error
1× 10−4 cHSS = 10−3[0.000823, 0.0096, 0.5880, 0.0058, 0.0013] 0.3%

cFSMSO = 10−3[0.000827, 0.0095, 0.5880, 0.0058, 0.0001]
1× 10−3 cHSS = 10−3[0.00824, 0.0110, 0.6560, 0.0580, 0.0136] 4%

cFSMSO = 10−3[0.00823, 0.0108, 0.7720, 0.0580, 0.0133]
3× 10−3 cHSS = 10−3[5.1000, 0.0505, 0.8800, 0.1745, 0.0446] 57%

cFSMSO = 10−3[0.0247, 0.0194, 1.9160, 0.1740, 0.0408]
4× 10−3 cHSS = 10−3[32.400, 0.0013, 1.0880, 0.2330, 0.0626] 454%

cFSMSO = 10−3[0.0329, 0.0267, 2.8680, 0.2320, 0.0548]

To show the reduction in the design space caused by using bλ(0), we have solved
this problem using rλ(0) instead. This practice results in the compensator k4 =
105[0.9082, 0.3590, 1.1773, 0.2372, 0.001, 0.0616, 1.0432, 1.196]T for which c = [1.86×
10−5, 0.0052, 0.0121, 1.845× 10−4, 6.10× 10−5]T . Figure 16 shows that ∆λ is about
10 times larger than the one in Figure 13. Actually, V[λ] is about 2276 times larger.
This fact heavily penalizes the compensator via bλ(0) in spite of its actual improved
performance. The reader should also notice that there is an offset of about 10%
between E[λ(p)] and λ(E[p]). Performance improvements in all the metrics were
attained. Figures 17 and 18 show the corresponding output and control, from which
considerable improvements are seen when compared with Figures 14 and 15.

7.2 Disturbance Rejection for a Flexible Beam

The second example will focus on the disturbance rejection for a flexible beam test
article with both physical and modal parameter uncertainties. The system, displayed
in Figure 19, consists of a flexible thin aluminum blade, one-meter long, attached at
its base to a hub motor. The hub motor is the control actuator for the system. At
the tip of the beam, there is a reaction wheel that serves as a disturbance generator.
The test article has nine sensors that may be used in any combination for either
feedback or performance output monitoring. The finite element method is used to
model this system by utilizing Euler-Bernoulli planar beam elements. A complete
description of the flexible beam test article [20] is available.

For this paper a SISO system is studied. The input u is the hub motor torque
and the measured output y is the tip velocity. The tip reaction wheel disturbance
is modeled by passing a Gaussian white noise process through a second-order linear
low-pass filter, with parameters ξf = 0.8 and ωf = 200π rad/s. The first five modes
of the elastic structure are used to build a state space realization of the plant. This,
in addition to the disturbance model leads to an open-loop system where x ∈ R12,
u ∈ R and y ∈ R. The uncertain parameters are the Young’s Modulus E (Pa),
the density ρ (Kg/m3) and the damping ratios of the retained vibration modes ξi,
i = 1, 2, 3, 4, 5. This set leads to p = [E, ρ, ξ1, ξ2, ξ3, ξ4, ξ5]T , whose components are
assumed independent. The corresponding PDFs are given in Table 3. The mean

29



Figure 16. CDF of λ for a compensator with parameters k4.

Figure 17. y(t) for a compensator with parameters k4. A zoom is shown below.
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Figure 18. u(t) for a compensator with parameters k4

Figure 19. Flexible beam test article.
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Table 3. Uncertainty Model.
E ∆E = 1010[5.226, 7.839] fE(E) = B(5, 5)
ρ ∆ρ = [2280, 3420] fρ(ρ) = B(3, 3)
ξ1 ∆ξ1 = [0.08, 0.12] fξ1(ξ1) = B(2, 2)
ξ2 ∆ξ2 = [0.0252, 0.0378] fξ2(ξ2) = B(2, 2)
ξ3 ∆ξ3 = [0.02, 0.03] fξ3(ξ3) = B(2, 2)
ξ4 ∆ξ4 = [0.0304, 0.0456] fξ4(ξ4) = B(2, 2)
ξ5 ∆ξ5 = [0.02, 0.03] fξ5(ξ5) = B(2, 2)

values of the uncertain parameters are set to coincide with parameters in the finite
element model leading to good matches with experimental data. The supports of
the distributions were set according to reasonable ranges of variation. The shapes
of the PDFs were chosen arbitrarily. Performance requirements on stability and the
output RMS are considered. Full-state feedback with a full-order observer determine
the control structure.

7.2.1 Nominal Compensator

As before, a baseline compensator for the nominal plant is designed such that the
RMS value is minimized. The resulting compensator, with parameters d1, leads
to yrms = 0.011 m/s. The propagation of the uncertainty prescribed in Table 3
through the closed loop-system show that this compensator is robustly unstable
with rλ(0) = 0.235.

7.2.2 Reliability-based Compensator

For this example, a shapable failure domain for the RMS requirement is assumed.
This leads to the cost vector c = [rλ(0), ryrms(e) + γyrms ]T , where e ∈ [0, 0.05] and
γyrms = e. The selected control structure makes the feedback gain G, the observer
gain L and the RMS failure boundary e, the design variables. Recall that the
separation principle does not hold. The resulting closed-loop dynamics is given by
Equations (4) and (5). Notice that although the observer is deterministic, all the
closed-loop poles are random.

The synthesis approach with w = [20, 1]T leads to a compensator with pa-
rameters d2, for which rλ(0) = 0, e = 0.0139 m/s, ryrms(e) = 3.6 × 10−3 and
c = [0, 3.6× 10−3]T . The probabilistic analysis of this compensator leads to the re-
sults shown in Figures 20-21. Figure 20 shows that the random variable yrms for d2

is moved toward zero from yrms = 0.05, by virtue of the non-fixed failure boundary.
Figure 21 shows Bode magnitude plots of the disturbance to output transfer func-
tion, namely Tzy. Notice that differences in the mid-frequency range, i.e. ω ≈ 1, of
the diagram have a bigger impact on the RMS value. In addition, considerable vari-
ability in the closed-loop Bode magnitude plot as well as a significant reduction in
the damping of the first mode are attained near 20 rad/s. It is interesting to notice
that even though d2 leads to a robustly stable closed-loop system in Equation (4),
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the full-state feedback subsystem Ã1,1 and the full-order observer subsystem Ã2,2

have a non-zero probability of instability. This indicates that the application of the
Separation Principle before accounting for uncertainty in the model artificially re-
duces the design space. In other words, a design that accommodates for uncertainty
based on the full system dynamics, i.e. Equation (4), may lead to robustly stable
solutions in a design region which would have been rejected for reasons of instability
if the Separation Principle had been applied before searching for a robust regulator
with full-state feedback and a robust observer.

Figure 20. PDFs for the reliability based and the robustness based compensators.

7.2.3 Mixed Compensator

Lets take c = [rλ(0), τyrms(0)]T , where the hybrid approach will be used for the
stability metric and HSS for the RMS metric. The synthesis algorithm leads to
d3, for which c = [0, 1.34 × 10−4]T . This compensator leads to the dashed line in
Figure 20. Comparing both solutions, we see that while the PDF corresponding
to the reliability-based compensator has less probability of exceeding the boundary
value of e = 0.0139 m/s, the robustness-based compensator leads to a PDF which is
much more concentrated toward the ideal value of zero. This clearly shows that the
conceptual differences between the two formulations. Since there is no conservatism
in the selection of the nominal plant, i.e., G(E[p]) is not the most difficult plant to
control, yrms = 0.011 m/s does not necessarily bound the supports of the PDFs.
This can be observed in Figure 20, where the support corresponding to d3 contains
yrms = 0.011 m/s.
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Figure 21. Bode diagrams of Tzy for d2.

7.2.4 Mean and Variance based Compensator

For this case we assume c = [bλ(0), τyrms(0)]T , where the FSMSO method will be
used to estimate both indexes. In contrast to the previous example, the accuracy of
the results made the method suitable for synthesis. Analytical sensitivities were used
in the moments approximations. For instance, the sensitivities of the closed-loop
poles that determine λ are given by

Ãvj = sjvj

∂sj = zT
j ∂Ãvj

∂2sj = zT
j

[
∂2Ã + (∂Ã− ∂sjI)(sjI− Ã)−1∂Ã + ∂Ã(sjI− Ã)−1(∂Ã− ∂sjI)

]
vj

where zj is the jth eigenvector of ÃT , the right and left eigenvalues are normalized,
i.e. zT

j vj = 1, and and non-repeated poles are assumed. Derivatives of the output
covariance are given by

∂ỹrms =
{

diag
[
C̃∂QC̃T + 2∂C̃QC̃T

]}1/2

∂2ỹrms =
{

diag
[
C̃∂2QC̃T + 4∂C̃∂QC̃T + 2∂2C̃QC̃T + 2∂C̃∂Q∂C̃T

]}1/2

where the derivatives of the state covariance are given by the solution to the set of
Lyapunov equations

Ã∂Q + ∂QÃT + ∂ÃQ + Q∂ÃT + ∂B̃SB̃T + B̃S∂B̃T = 0
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Ã∂2Q + ∂2QÃT + 2∂Ã∂Q + 2∂Q∂ÃT + ∂2Ã∂Q+

∂Q∂2ÃT + 2∂B̃S∂B̃T + ∂2B̃SB̃T + B̃S∂2B̃T = 0

The synthesis algorithm leads to a compensator with parameters d4, for which
c = [5.33×10−6, 1.33×10−4]T . The resulting PDF for the RMS is indistinguishable
from the one shown in Figure 20 even though the compensators are different. The
CDFs of λ for d3 and d4 are superimposed in Figure 22. As before, the tendency of
the formulation of making λ as deterministic as possible is apparent. Notice however,
that the CPU time required for the analysis of d3 is 421 seconds while the one for d4

is 1.22 seconds. On the other hand, the analysis of the compensator with parameters
d4 via HSS takes 64 seconds. This exemplifies substantial savings in CPU time which
result from using the FSMSO method. In this example, those savings justify the
labor required to compute analytical derivatives. The reader should recall, however,
that the same method led to inaccurate results for the satellite example.

Figure 22. CDFs of λ for d3 and d4.

8 Conclusions

This paper proposes a control synthesis methodology for systems with probabilis-
tic uncertainty. Synthesis is performed by solving a multi-objective optimization
problem which combines requirements of stability and performance in time- and
frequency-domains. In this study, reliability- and robustness- based formulations
are proposed and several numerical methods for estimation are examined. In a re-
liability formulation, the probability of violating design requirements is minimized
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while admissible domains are contracted toward regions with an improved perfor-
mance. In a robustness-based formulation, a metric that measures the concentration
of the random variable/process about a target scalar/function is minimized. These
two formulations lead to compensators with distinctive characteristics. In addition,
metrics that bound the reliability metrics proposed, whose estimation only requires
of means and variances, are also derived and used for control design.

Some of the fundamental differences between the proposed strategy and conven-
tional robust control methods are: (i) unnecessary conservatism is eliminated since
there is not need for convex supports/sets, (ii) the most likely plants are favored
during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff be-
tween robust stability and robust performance can be explored numerically, (iv) the
uncertainty set, which could be unbounded, is closely related to parameters with
clear physical meaning, and (v) compensators with improved robust characteristics
for a given control structure can be designed, e.g., one can search for a PID con-
troller with best robust characteristics. Examples related to the attitude control of
a satellite and to control design for disturbance rejection in a flexible beam are used
to demonstrate and validate the methodology.
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